Giancarlo Valeri
Hydrogen is the most common element in nature. It is estimated to make up 75% of the mass of the universe. Except for that contained in air, it is primarily stored in water in the form of a compound, and water is the most widely distributed substance on earth.
Hydrogen has the best thermal conductivity of all gases – i.e. ten times higher than most of them – and it is therefore an excellent heat transfer carrier in the energy industry.
Hydrogen has good combustion performance, rapid ignition, and has a wide fuel range when mixed with air. It has a high ignition point and rapid combustion rate.
Except for nuclear fuels, the calorific value of hydrogen is the highest among all fossil and chemical fuels, as well as biofuels, reaching 142.35 kJ/kg. The calorie per kilogram of hydrogen burned is about three times that of gasoline and 3.9 times that of alcohol, as well as 4.5 times that of coke.
Hydrogen has the lightest weight of all elements. It can appear as gas, liquid, or solid metal hydride, which can adapt to different storage and transport needs and to various application environments.
Burning hydrogen is cleaner than other fuels – besides generating small amounts of water – and does not produce hydrogen azide as carbon monoxide, carbon dioxide (harmful to the environment), hydrocarbons, lead compounds and dust particles, etc. A small amount of hydrogen nitride will not pollute the environment after proper treatment, and the water produced by combustion can continue to produce hydrogen and be reused repeatedly.
Extensive use practices show that hydrogen has a record of safe use. There were 145 hydrogen-related accidents in the United States between 1967 and 1977, all of which occurred in petroleum refining, the chlor-alkali industry, or nuclear power plants, and did not really involve energy applications.
Experience in the use of hydrogen shows that common hydrogen accidents can be summarized as follows: undetected leaks; safety valve failure; emptying system failure; broken pipes, tubes or containers; property damage; poor replacement; air or oxygen and other impurities left in the system; too high hydrogen discharge rate; possible damage of pipe and tube joints or bellows; accidents or tipping possibly occurring during the hydrogen transmission process.
These accidents require two additional conditions to cause a fire: one is the source of the fire and the other is the fact that the mixture of hydrogen and air or oxygen must be within the limits of the possibility of fires or violent earthquakes in the local area.
Under these two conditions, an accident cannot be caused if proper safety measures are established. In fact, with rigorous management and careful implementation of operating procedures, most accidents do not theoretically occur.
The development of hydrogen energy is triggering a profound energy revolution and could become the main source of energy in the 21st century.
The United States, Europe, Japan, and other developed countries have formulated long-term hydrogen energy development strategies from the perspective of national sustainable development and security strategies.
Israel, however, makes warning and calls for caution.
While the use of hydrogen allows for the widespread penetration of renewable energy, particularly solar and wind energy – which, due to storage difficulties, are less available than demand – Israeli experts say that, despite its many advantages, there are also disadvantages and barriers to integrating green hydrogen into industry, including high production costs and high upfront investment in infrastructure.
According to the Samuel Neaman Institute’s Energy Forum report (April 11, 2021; authors Professors Gershon Grossman and Naama Shapira), Israel is 7-10 years behind the world in producing energy from clean hydrogen.
Prof. Gideon Friedman, actingchief scientist and Director of Research and Development at the Ministry of Energy, explains why: “Israel has a small industry that is responsible for only 10% of greenhouse gas emissions – unlike the world where they are usually 20% – and therefore the problems of emissions in industry are a little less acute in the country.”
At a forum held prior to the report’s presentation, senior officials and energy experts highlighted the problematic nature of integrating clean hydrogen into industry in Israel.
Dr. Yossi Shavit, Head of the cyber unit in industry at the Ministry of Environmental Protection, outlined the risks inherent in hydrogen production, maintenance and transportation, including the fact that it is a colourless and odourless gas that makes it difficult to detect a leak. According to Dr. Shavit, hydrogen is a hazardous substance that has even been defined as such in a new regulation on cyber issues published in 2020.
Dr. Shlomo Wald, former chief scientist at the Ministry of Infrastructure, argued that in the future hydrogen would be used mainly for transportation, along with electricity.
Prof. Lior Elbaz of Bar-Ilan University said that one of the most important things is the lack of laws: “There is no specific regulation for hydrogen in Israel, but it is considered a dangerous substance. In order for hydrogen to be used for storage and transportation, there needs to be a serious set of laws that constitute a bottleneck in our learning curve.” “Israel has something to offer in innovation in the field, but government support will still be needed in this regard – as done in all countries – and approximately a trillion dollars in the field of hydrogen is expected to be invested in the next decade.”
Although the discussion was mainly about Israel’s delay in integrating clean hydrogen into the industry, it has emerged that Sonol (Israel’s fuel supplier ranking third in the country’s gas station chain) is leading a project, together with the Ministry of Transport, to establish Israel’s first hydrogen refuelling station. “We believe there will be hydrogen transportation in Israel for trucks and buses,” said Dr. Amichai Baram, Vice President of operations at Sonol. “Hydrogen-powered vehicles for the country – albeit not really cheap in the initial phase – and regulations promoted in the field, both for gas stations and vehicles.”
Renewables account for only 6% of Israel’s energy sources and, according to the latest plans published by the Ministry of Energy and adopted by the government, the target for 2030 is 30%.
This is an ambitious goal compared to reality, and also far from the goal of the rest of the countries in the world that aim at energy reset by 2050.
The authors of the aforementioned report emphasize that fully using the clean hydrogen potential is key to achieving a higher growth target for Israel.
According to recommendations, the State should critically examine the issue in accordance with Israel’s unique conditions and formulate a strategy for the optimal integration of hydrogen into the energy economy.
Furthermore, it must support implementation, both through appropriate regulations and through the promotion of cooperation with other countries and global companies, as well as through investment in infrastructure, and in research and development, industry and in collaboration with the academic world.
There are countries in Europe or the Middle East that have already started green energy production projects, and finally it was recommended to work to develop Israeli innovations in the field, in collaboration with the Innovation Authority and the Ministry of Energy.